四川省成都市2024-2025学年高二数学上学期第二次周考试题word版  人教版

下载地址::(声明:本站为非盈利性网站。资料版权为原作者所有,如侵权请联系均无条件删除)

资料下载说明::请下完一个再下另外一个,谢谢!

1、 如果您喜欢这个资料请 收藏此页 

2、资料一般为winrar压缩文件,请下载后解压使用

3、有任何下载问题,请【发短信】

文件简介::
高2026届高二数学上期第二次周考试题

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1已知复数满足,则()
A.1B.2C.D.
【答案】C
【解析】
设,则,
由,则,
化简得,
则,解得,
则,
所以.
故选:C.
2.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:
907966191925271932812458569683
431257393027556488730113537989
据此估计,该运动员三次投篮恰有两次命中的概率为()
A.0.35B.0.25C.0.20D.0.15
【答案】B
【解析】
三次投篮共有20种,
恰有两次命中的事件有:191,271,932,812,393,有5种
∴该运动员三次投篮恰有两次命中的概率为
故选:B
3.如图,在三棱锥中,两两垂直,且,点E为中点,若直线与所成的角为,则三棱锥的体积等于()

A.B.C.2D.
【答案】D
【解析】
如图,

∵,点为的中点,
∴,,
∵,,两两垂直,,
∴平面,取BD的中点F,连接EF,
∴为直线与所成的角,且,
由题意可知,,设,连接AF,
则,
在中,由余弦定理,得,
即,解得,即
∴三棱锥的体积.
故选:.
4.已知平面平面,.下列结论中正确的是()
A.若直线平面,则B.若平面平面,则
C.若直线直线,则D.若平面直线,则
【答案】D
【解析】
A,若,,则或,故A错误;
B,若,,则或与相交,故B错误;
C,若,,,必须,利用面面垂直的性质定理可知,故C错误;
D,若,,即,利用面面垂直的判定定理知,故D正确;
故选:D.
5.如图,在长方体中,,点B到平面距离为()

A.B.C.D.
【答案】C
【解析】

由题意得点到平面距离为三棱锥的高,
设点到平面距离为,取中点,连接,
因为为长方体,所以,所以,
,,,
所以,,解得.
故选:C.
6.自1972年慕尼黑奥运会将射箭运动重新列入奥运会项目以来,这项运动逐渐受到越来越多年轻人的喜爱.已知甲、乙两位射箭运动员射中10环的概率均为,且甲、乙两人射箭的结果互不影响,若两人各射箭一次,则甲、乙两人中至少有一人射中10环的概率为()
A.B.C.D.
【答案】D
【解析】
记“甲射中10环”为事件,“乙射中10环”为事...
    

用户中心

网站推荐

版权声明:本站资料大部分为网络收集整理、会员上传。如有侵权,请发邮件给我们,我们均无条件删除。邮箱:xiaocaozhijia@yeah.net