11 1 用样本估计总体——2026版53高考总复习精练册word  人教版

下载地址::(声明:本站为非盈利性网站。资料版权为原作者所有,如侵权请联系均无条件删除)

资料下载说明::请下完一个再下另外一个,谢谢!

1、 如果您喜欢这个资料请 收藏此页 

2、资料一般为winrar压缩文件,请下载后解压使用

3、有任何下载问题,请【发短信】

文件简介::
专题十一统计

11.1用样本估计总体

五年高考

考点抽样方法与总体分布的估计

1.(2024新课标Ⅱ,4,5分,易)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并整理得下表:

亩产量

[900,

950)

[950,

1000)

[1000,

1050)

[1050,

1100)

[1100,

1150)

[1150,

1200)

频数

6

12

18

30

24

10

根据表中数据,下列结论中正确的是()

A.100块稻田亩产量的中位数小于1050kg

B.100块稻田中亩产量低于1100kg的稻田所占比例超过80%

C.100块稻田亩产量的极差介于200kg至300kg之间

D.100块稻田亩产量的平均值介于900kg至1000kg之间

答案 C

2.(2022全国甲,2,5分,易)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:



则()

A.讲座前问卷答题的正确率的中位数小于70%

B.讲座后问卷答题的正确率的平均数大于85%

C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差

D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差

答案 B

3.(2021全国甲理,2,5分,易)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:



根据此频率分布直方图,下面结论中不正确的是()

A.该地农户家庭年收入低于4.5万元的农户比率估计为6%

B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%

C.估计该地农户家庭年收入的平均值不超过6.5万元

D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间

答案 C

4.(2020课标Ⅲ文,3,5分,易)设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为()

A.0.01 B.0.1 C.1 D.10

答案 C

5.(多选)(2021新高考Ⅱ,9,5分,易)下列统计量中可用于度量样本x1,x2,…,xn离散程度的有()

A.x1,x2,…,xn的标准差

B.x1,x2,…,xn的中位数

C.x1,x2,…,xn的极差

D.x1,x2,…,xn的平均数

答案 AC

6.(多选)(2021新高考Ⅰ,9,5分,易)有一组样本数据x1,x2,…,xn,由这组数据得到新样本数据y1,y2,…,yn,其中yi=xi+c(i=1,2,…,n),c为非零常数,则()

A.两组样本数据的样本平均数相同

B.两组样本数据的样本中位数相同

C.两组样本数据的样本标准差相同

D.两组样本数据的样本极差相同

答案 CD

7.(多选)(2023新课标Ⅰ,9,5分,中)有一组样本数据x1,x2,…,x6,其中x1是最小值,x6是最大值,则()

A.x2,x3,x4,x5的平均数等于x1,x2,…,x6的平均数

B.x2,x3,x4,x5的中位数等于x1,x2,…,x6的中位数

C.x2,x3,x4,x5的标准差不小于x1,x2,…,x6的标准差

D.x2,x3,x4,x5的极差不大于x1,x2,…,x6的极差

答案 BD

8.(2021全国乙,文17,理17,12分,中)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如表:

旧设备

9.8

10.3

10.0

10.2

9.9

9.8

10.0

10.1

10.2

9.7

新设备

10.1

10.4

10.1

10.0

10.1

10.3

10.6

10.5

10.4

10.5

旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为s12和s22.

(1)求x,y,s12,s22;

(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高如果y?x≥2s12+s2210,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高.

解析(1)x=110(9.8+10.3+10.0+10.2+9.9+9.8+10.0+10.1+10.2+9.7)=10.0.

y=110(10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.5)=10.3.

s12=110[(9.8-10.0)2+(10.3-10.0)2+(10.0-10.0)2+(10.2-10.0)2+(9.9-10.0)2+(9.8-10.0)2+(10.0-10.0)2+(10.1-10.0)2+(10.2-10.0)2+(9.7-10.0)2]=0.036.

s22=110[(10.1-10.3)2+(10.4-10.3)2+(10.1-10.3)2+(10.0-10.3)2+(10.1-10.3)2+(10.3-10.3)2+(10.6-10.3)2+(10.5-10.3)2+(10.4-10.3)2+(10.5-10.3)2]=0.04.

(2)由(1)得y?x=0.3,s12+s22=0.076,

从而(y?x)2=0.09,2s12+s22102=25(s12+s22)=0.0304.

所以(y?x)2>2s12+s22102,又y>x,故y?x>2s12+s2210,

因此新设备生产产品的该项指标的均值较旧设备有显著提高.

9.(2023全国乙理,17,12分,难)某厂为比较甲、乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为xi,yi(i=1,2,…,10),试验结果如下:

试验

序号i

1

2

3

4

5

6

7

8

9

10

伸缩

率xi

545

533

551

522

575

544

541

568

596

548

伸缩

率yi

536

527

543

530

560

533

522

550

576

536

记zi=xi-yi(i=1,2,…,10),记z1,z2,…,z10的样...
    

用户中心

网站推荐

版权声明:本站资料大部分为网络收集整理、会员上传。如有侵权,请发邮件给我们,我们均无条件删除。邮箱:xiaocaozhijia@yeah.net