高考数学专题14 分类讨论证明或求函数的单调区间(含参)word版 人教版
- 草料大小:1519K
- 草料种类:试卷
- 种草时间:2025/6/27 15:03:00
- 小草编号:4611469
- 种 草 人:太阳花,欢迎分享资料。
- 采摘:1 片叶子 0 朵小花
- 版权声明:资料版权归原作者,如侵权请联系删除
- 论文写作:职称论文及课题论文写作(提供查重报告)
- 论文发表:淘宝交易,先发表再确认付款。
下载地址::(声明:本站为非盈利性网站。资料版权为原作者所有,如侵权请联系均无条件删除)
资料下载说明::请下完一个再下另外一个,谢谢!
文件简介::
专题14分类讨论证明或求函数的单调区间(含参)
1.设函数.
(1)当时,讨论在内的单调性;
(2)当时,证明:有且仅有两个零点.
【答案】(1)在或上单调递减,在或上单调递增;(2)证明见解析.
【分析】
(1)先求导,根据导数和函数的单调性,结合三角函数的性质即可求出单调区间;
(2)先判断出函数为偶函数,则问题转化为在有且只有一个零点,再利用导数和函数单调性的关系,以及函数零点存在定理即可求出.
【详解】
(1)当时,,
,
令,解得或,,
当时,解得或,当时,解得或,
在,或,上单调递减,在或上单调递增;
(2)的定义域为,
,
为偶函数,
,
有且仅有两个零点等价于在有且只有一个零点,
,
当时,,恒成立,
在上单调递减,
,
,
在上有且只有一个零点,
当时,令,即,
可知存在唯一,使得,
当或时,,,函数单调递增,
当时,,,函数单调递减,
由,,可得,
当,,
,
在上有且只有一个零点,
综上所述,当时,有且仅有两个零点.
【点睛】
方法点睛:1、利用导数研究函数的单调性的关键在于准确判定导数的符号,当f(x)含参数时,需依据参数取值对不等式解集的影响进行分类讨论;若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.
2、用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.
2.已知函数.
(1)讨论函数的单调区间;
(2)当时,求证:.
【答案】(1)答案见解析;(2)证明见解析.
【分析】
(1)先求导,分为,,和四种情形进行分类讨论,根据导数和函数单调性的关系即可求出;
(2)等价于,令,利用当时的结论,根据导数判断与0的关系,即可证明.
【详解】
解:的定义域为,
则,
当时,,当时,,当时,,
函数的单调递减区间为,单调递增区间为,
当时,令,解得或,
当时,恒成立,
函数的单调递减区间为,无单调递增区间,
当时,,
当或时,,当,时,,
函数的单调递减区间为或,单调递增区间为,,
当,,
当或,时,,当时,,
函数的单调递减区间为或,,单调递增区间为.
综上所述:当时,函数的单调递减区间为,单调递增区间为,
当时,函数的单调递减区间为,无单调递增区间,
当时,函数的单调递减区间为,,单调递增区间为,,
当时,函数的单调递减区间为或,,单调递增区间为.
(2)证明:要证,即证,
令,
则,
由(1),当时,,
可得的单调递减区间为,单调递增区间为,
即的单调递减区间为,单调递增区间为,
(1),
在上单调递增,
(1),
当时,,,
当时,,,
,
即.
【点睛】
含有参数的函数单调性讨论常见的形式:
(1)对二次项系数的符号进行讨论;
(2)导函数是否有零点进行讨论;
(3)导函数中零点的大小进行讨论;
(4)导函数的零点与定义域端点值的关系进行讨论等.
3.已知函数.
(1)若,求在区间上的极值;
(2)讨论函数的单调性.
【答案】(1)极小值为,无极大值;(2)答案见解析.
【分析】
(1)当时,求得,利用导数分析函数的单调性,由此可求得函数在区间上的极值;
(2)求得,分和两种情况讨论,分析导数的符号变化,由此可得出函数的单调递增区间和递减区间.
【详解】
(1)当时,,所以,,列表;
单调递减
极小
单调递增
所以,在区间上的有极小值,无极大值;
(2)函数的定义域为,.
当时,,从而,故函数在上单调递减;
当时,若,则,从而;
若,则,从而.
故函数在上单调递减,在上单调递增.
综上所述,当时,函数的单调递减区间为,无单调递增区间;
当时,函数的单调递减区间为,单调递增区间为.
【点睛】
方法点睛:讨论含参数函数的单调性,通常以下几个方面:
(1)求导后看函数的最高次项系数是否为,需分类讨论;
(2)若最高次项系数不为,且最高次项为一次,一般为一次函数,求出导数方程的根;
(3)对导数方程的根是否在定义域内进行分类讨论,结合导数的符号变化可得出函数的单调性.
4.已知函数.
(1)试讨论的单调性;
(2)若,证明:.
【答案】(1)答案不唯一见解析;(2)证明见解析.
【分析】
(1)对函数进行求导得,再对分三种情况讨论,即,,三种情况;
(2)要证明,只需证明,而,因此只需证明,再利用函数的单调性,即可得证;
【详解】
解析:(1)因为,
①当时,,当时,,当时,,所以在上单调递增,在上单调递减;
②当时,,
当时,,当时,,所以在单调递增,在单调递减;
③当时,,当时,,当时,,所以在单调递减,在单调递增.
(2)要证明,只需证明,
而,因此只需证明,
当时,,由(1)知在上单调递增,在上单调递减,所以;
当时,,
故.
【点睛】
利用导数研究含参函数的单调区间,要注意先求导后,再解导数不等式.
5.已知函数,a为非零常数.
(1)求单调递减区间;
(2)讨论方程的根的个数.
【答案】(1)当时,的单调递减区间为,当时,的单调递减区间为;(2)当时,原方程有且仅有一个解;当时,原方程有两个解.
【分析】
(1)求导,对分类讨论,利用可解得结果;
(2)转化为函数与的图象的交...
1.设函数.
(1)当时,讨论在内的单调性;
(2)当时,证明:有且仅有两个零点.
【答案】(1)在或上单调递减,在或上单调递增;(2)证明见解析.
【分析】
(1)先求导,根据导数和函数的单调性,结合三角函数的性质即可求出单调区间;
(2)先判断出函数为偶函数,则问题转化为在有且只有一个零点,再利用导数和函数单调性的关系,以及函数零点存在定理即可求出.
【详解】
(1)当时,,
,
令,解得或,,
当时,解得或,当时,解得或,
在,或,上单调递减,在或上单调递增;
(2)的定义域为,
,
为偶函数,
,
有且仅有两个零点等价于在有且只有一个零点,
,
当时,,恒成立,
在上单调递减,
,
,
在上有且只有一个零点,
当时,令,即,
可知存在唯一,使得,
当或时,,,函数单调递增,
当时,,,函数单调递减,
由,,可得,
当,,
,
在上有且只有一个零点,
综上所述,当时,有且仅有两个零点.
【点睛】
方法点睛:1、利用导数研究函数的单调性的关键在于准确判定导数的符号,当f(x)含参数时,需依据参数取值对不等式解集的影响进行分类讨论;若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.
2、用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.
2.已知函数.
(1)讨论函数的单调区间;
(2)当时,求证:.
【答案】(1)答案见解析;(2)证明见解析.
【分析】
(1)先求导,分为,,和四种情形进行分类讨论,根据导数和函数单调性的关系即可求出;
(2)等价于,令,利用当时的结论,根据导数判断与0的关系,即可证明.
【详解】
解:的定义域为,
则,
当时,,当时,,当时,,
函数的单调递减区间为,单调递增区间为,
当时,令,解得或,
当时,恒成立,
函数的单调递减区间为,无单调递增区间,
当时,,
当或时,,当,时,,
函数的单调递减区间为或,单调递增区间为,,
当,,
当或,时,,当时,,
函数的单调递减区间为或,,单调递增区间为.
综上所述:当时,函数的单调递减区间为,单调递增区间为,
当时,函数的单调递减区间为,无单调递增区间,
当时,函数的单调递减区间为,,单调递增区间为,,
当时,函数的单调递减区间为或,,单调递增区间为.
(2)证明:要证,即证,
令,
则,
由(1),当时,,
可得的单调递减区间为,单调递增区间为,
即的单调递减区间为,单调递增区间为,
(1),
在上单调递增,
(1),
当时,,,
当时,,,
,
即.
【点睛】
含有参数的函数单调性讨论常见的形式:
(1)对二次项系数的符号进行讨论;
(2)导函数是否有零点进行讨论;
(3)导函数中零点的大小进行讨论;
(4)导函数的零点与定义域端点值的关系进行讨论等.
3.已知函数.
(1)若,求在区间上的极值;
(2)讨论函数的单调性.
【答案】(1)极小值为,无极大值;(2)答案见解析.
【分析】
(1)当时,求得,利用导数分析函数的单调性,由此可求得函数在区间上的极值;
(2)求得,分和两种情况讨论,分析导数的符号变化,由此可得出函数的单调递增区间和递减区间.
【详解】
(1)当时,,所以,,列表;
单调递减
极小
单调递增
所以,在区间上的有极小值,无极大值;
(2)函数的定义域为,.
当时,,从而,故函数在上单调递减;
当时,若,则,从而;
若,则,从而.
故函数在上单调递减,在上单调递增.
综上所述,当时,函数的单调递减区间为,无单调递增区间;
当时,函数的单调递减区间为,单调递增区间为.
【点睛】
方法点睛:讨论含参数函数的单调性,通常以下几个方面:
(1)求导后看函数的最高次项系数是否为,需分类讨论;
(2)若最高次项系数不为,且最高次项为一次,一般为一次函数,求出导数方程的根;
(3)对导数方程的根是否在定义域内进行分类讨论,结合导数的符号变化可得出函数的单调性.
4.已知函数.
(1)试讨论的单调性;
(2)若,证明:.
【答案】(1)答案不唯一见解析;(2)证明见解析.
【分析】
(1)对函数进行求导得,再对分三种情况讨论,即,,三种情况;
(2)要证明,只需证明,而,因此只需证明,再利用函数的单调性,即可得证;
【详解】
解析:(1)因为,
①当时,,当时,,当时,,所以在上单调递增,在上单调递减;
②当时,,
当时,,当时,,所以在单调递增,在单调递减;
③当时,,当时,,当时,,所以在单调递减,在单调递增.
(2)要证明,只需证明,
而,因此只需证明,
当时,,由(1)知在上单调递增,在上单调递减,所以;
当时,,
故.
【点睛】
利用导数研究含参函数的单调区间,要注意先求导后,再解导数不等式.
5.已知函数,a为非零常数.
(1)求单调递减区间;
(2)讨论方程的根的个数.
【答案】(1)当时,的单调递减区间为,当时,的单调递减区间为;(2)当时,原方程有且仅有一个解;当时,原方程有两个解.
【分析】
(1)求导,对分类讨论,利用可解得结果;
(2)转化为函数与的图象的交...