高考数学专题15 已知函数的单调区间求参数的范围word版 人教版
- 草料大小:1303K
- 草料种类:试卷
- 种草时间:2025/6/27 15:03:00
- 小草编号:4611470
- 种 草 人:太阳花,欢迎分享资料。
- 采摘:1 片叶子 0 朵小花
- 版权声明:资料版权归原作者,如侵权请联系删除
- 论文写作:职称论文及课题论文写作(提供查重报告)
- 论文发表:淘宝交易,先发表再确认付款。
下载地址::(声明:本站为非盈利性网站。资料版权为原作者所有,如侵权请联系均无条件删除)
资料下载说明::请下完一个再下另外一个,谢谢!
文件简介::
专题15已知函数的单调区间求参数的范围
一、单选题
1.若函数在区间上单调递增,则实数的取值范围是()
A.B.C.D.
【答案】C
【分析】
利用导函数研究原函数的单调性,利用单调性求解实数的取值范围.
【详解】
解:函数
则
上,
要使函数在区间上单调递增,
在上恒成立,
即:在上恒成立,
上,
故选:.
【点睛】
导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.
2.已知函数,函数的图象过定点,对于任意,有,则实数的范围为()
A.B.
C.D.
【答案】A
【分析】
由图象过定点可得,设,结合已知条件可得在递增,求的导数,令,由二次函数的性质可得,从而可求出实数的范围.
【详解】
解:因为的图象过定点,所以,解得,
所以,因为对于任意,
有,则,设,
即,
所以,令,
因为,则,所以要使在恒成立,只需,
故,整理得,解得,
故选:A.
【点睛】
关键点睛:
本题的关键是由已知条件构造新函数,并结合导数和二次函数的性质列出关于参数的不等式.
3.已知函数在区间上单调递增,则的取值范围是()
A.B.C.D.
【答案】A
【分析】
由函数的单调性与导数的关系得出在区间上恒成立,将问题转化为求,即可得出答案.
【详解】
在区间上恒成立,则在区间上恒成立
即
故选:A
4.函数是上的单调函数,则的范围是()
A.B.C.D.
【答案】D
【分析】
函数在上时单调函数,等价于导函数大于等于或小于等于恒成立,列不等式求出的范围即可.
【详解】
函数是上的单调函数,即或(舍)在上恒成立
,解得
故选:D
【点睛】
本题考查导数解决函数的单调性问题,考查二次函数的性质,属于基础题.
5.已知函数在,上为增函数,在上为减函数,则实数的取值范围为()
A.B.C.D.
【答案】B
【分析】
求导得到,然后根据在,上为增函数,在上为减函数,由求解.
【详解】
已知函数,
则,
因为在,上为增函数,在上为减函数,
所以,即,
解得,
所以实数的取值范围为
故选:B
【点睛】
本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.
6.函数在上单调递增,则实数a的取值范围是()
A.B.C.D.
【答案】D
【分析】
函数在上单调递增,所以在上恒成立,求函数的导函数,参变分离求最值即可.
【详解】
解:因为函数在上单调递增,
所以在上恒成立,即在上恒成立.
即,即,解得:或.
检验,当时,不是常函数,所以成立.
故选:D
【点睛】
本题考查已知函数的单调性求参数的范围,属于中档题.
方法点睛:
(1)已知在区间上单调递增,则导函数大于等于0恒成立;
(2)分类讨论或参变分离,求出最值即可.
易错点睛:
必须检验等号成立的条件,有可能取等号的时候是常函数,所以需要检验取等时是否是常函数.
7.对任意的,都有,则的最大值为()
A.1B.C.D.
【答案】B
【分析】
令,问题转化为函数在递增,求出函数的导数,求出函数的单调区间,从而求出的最大值即可.
【详解】
,,
,,
令,则函数在递增,
故,
解得:,所以是的子集,
可得,故的最大值是,
故选:B.
【点睛】
利用单调性求参数的范围的常见方法:①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;②利用导数转化为不等式或恒成立问题求参数范围.
8.函数单调递增的必要不充分条件有()
A.B.C.D.
【答案】A
【分析】
求导,把问题转化为在区间恒成立,分三种情况讨论即可得出结论。判断选项即可.
【详解】
由函数在区间单调递增,
则在区间恒成立,
即在区间恒成立,
①当时,,不满足题意;
②当时,,
又,
即,不满足题意;
③当时,,
又,在区间恒成立,
则,
综上:函数单调递增的充要条件为,
判断选项A正确.
故选:A.
【点睛】
思路点睛:利用导数研究函数的单调性以及求解必要不充分条件.
求定义域;
利用已知条件转化问题为在区间恒成立;
对参数分类讨论.
9.设函数在区间上单调递减,则实数的取值范围是()
A.B.C.D.
【答案】A
【分析】
利用的导函数,结合在区间上的单调性列不等式组求得的取值范围.
【详解】
由,则,
当时,,则单调递减;
当时,,则单调递增,
又函数在区间上单调递减,所以,解得,
故选:A.
【点睛】
本题主要考查利用函数的单调性求解参数的取值范围问题,其中导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查都非常突出,从高考来看,对导数的应用的考查主要从以下两个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.
10.已知函数的单调递增区间是,则()
A.B.C.D.
【答案】C
【分析】
首先求...
一、单选题
1.若函数在区间上单调递增,则实数的取值范围是()
A.B.C.D.
【答案】C
【分析】
利用导函数研究原函数的单调性,利用单调性求解实数的取值范围.
【详解】
解:函数
则
上,
要使函数在区间上单调递增,
在上恒成立,
即:在上恒成立,
上,
故选:.
【点睛】
导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.
2.已知函数,函数的图象过定点,对于任意,有,则实数的范围为()
A.B.
C.D.
【答案】A
【分析】
由图象过定点可得,设,结合已知条件可得在递增,求的导数,令,由二次函数的性质可得,从而可求出实数的范围.
【详解】
解:因为的图象过定点,所以,解得,
所以,因为对于任意,
有,则,设,
即,
所以,令,
因为,则,所以要使在恒成立,只需,
故,整理得,解得,
故选:A.
【点睛】
关键点睛:
本题的关键是由已知条件构造新函数,并结合导数和二次函数的性质列出关于参数的不等式.
3.已知函数在区间上单调递增,则的取值范围是()
A.B.C.D.
【答案】A
【分析】
由函数的单调性与导数的关系得出在区间上恒成立,将问题转化为求,即可得出答案.
【详解】
在区间上恒成立,则在区间上恒成立
即
故选:A
4.函数是上的单调函数,则的范围是()
A.B.C.D.
【答案】D
【分析】
函数在上时单调函数,等价于导函数大于等于或小于等于恒成立,列不等式求出的范围即可.
【详解】
函数是上的单调函数,即或(舍)在上恒成立
,解得
故选:D
【点睛】
本题考查导数解决函数的单调性问题,考查二次函数的性质,属于基础题.
5.已知函数在,上为增函数,在上为减函数,则实数的取值范围为()
A.B.C.D.
【答案】B
【分析】
求导得到,然后根据在,上为增函数,在上为减函数,由求解.
【详解】
已知函数,
则,
因为在,上为增函数,在上为减函数,
所以,即,
解得,
所以实数的取值范围为
故选:B
【点睛】
本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.
6.函数在上单调递增,则实数a的取值范围是()
A.B.C.D.
【答案】D
【分析】
函数在上单调递增,所以在上恒成立,求函数的导函数,参变分离求最值即可.
【详解】
解:因为函数在上单调递增,
所以在上恒成立,即在上恒成立.
即,即,解得:或.
检验,当时,不是常函数,所以成立.
故选:D
【点睛】
本题考查已知函数的单调性求参数的范围,属于中档题.
方法点睛:
(1)已知在区间上单调递增,则导函数大于等于0恒成立;
(2)分类讨论或参变分离,求出最值即可.
易错点睛:
必须检验等号成立的条件,有可能取等号的时候是常函数,所以需要检验取等时是否是常函数.
7.对任意的,都有,则的最大值为()
A.1B.C.D.
【答案】B
【分析】
令,问题转化为函数在递增,求出函数的导数,求出函数的单调区间,从而求出的最大值即可.
【详解】
,,
,,
令,则函数在递增,
故,
解得:,所以是的子集,
可得,故的最大值是,
故选:B.
【点睛】
利用单调性求参数的范围的常见方法:①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;②利用导数转化为不等式或恒成立问题求参数范围.
8.函数单调递增的必要不充分条件有()
A.B.C.D.
【答案】A
【分析】
求导,把问题转化为在区间恒成立,分三种情况讨论即可得出结论。判断选项即可.
【详解】
由函数在区间单调递增,
则在区间恒成立,
即在区间恒成立,
①当时,,不满足题意;
②当时,,
又,
即,不满足题意;
③当时,,
又,在区间恒成立,
则,
综上:函数单调递增的充要条件为,
判断选项A正确.
故选:A.
【点睛】
思路点睛:利用导数研究函数的单调性以及求解必要不充分条件.
求定义域;
利用已知条件转化问题为在区间恒成立;
对参数分类讨论.
9.设函数在区间上单调递减,则实数的取值范围是()
A.B.C.D.
【答案】A
【分析】
利用的导函数,结合在区间上的单调性列不等式组求得的取值范围.
【详解】
由,则,
当时,,则单调递减;
当时,,则单调递增,
又函数在区间上单调递减,所以,解得,
故选:A.
【点睛】
本题主要考查利用函数的单调性求解参数的取值范围问题,其中导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查都非常突出,从高考来看,对导数的应用的考查主要从以下两个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.
10.已知函数的单调递增区间是,则()
A.B.C.D.
【答案】C
【分析】
首先求...